Quiz on Derivatives

Friday 14th, October

Name:

Net ID:

Section:

1. State the definition of the derivative of a function f(x). (2pts)

The	deri	vative	is	a	function	
Plan		lin f	(x) - ·	f(a)		
4 U) —	X→a	× -	٩		

It's the slope of point x at the intersection with the fourth of f(x)

2. Compute the following derivatives using any tricks you know. (2pts each)

(a)
$$f(x) = 3x^2 + 5x - 12$$

6 $\chi + 5$

(b)
$$f(x) = 2e^4$$

Since $(e^{x})^{\prime} = e^{x}$,
 $\int_{x}^{\prime} (x) = 2e^{4}$

(c)
$$f(x) = \sin(x) \cdot \ln(x)$$

 $f(z)duct \quad (ule: (fg))^{l} = f^{l}g + g^{l}f$
 $-\cos(x) \cdot l_{u}x + \sin(x) \cdot l_{u}x =$
 $= (zinx - \cos x) \cdot l_{u}x$
(d) $f(x) = \ln(\cos(x))$
 $\frac{1}{\cos x}$

Using the power rule
$$(x^n)' = x^n \cdot l_n n$$
,
we get $(3x^2 + 5x - 12)' =$
 $= 3 \cdot 2x + 5 \cdot 1 = 6x + 5$
Using the power Rule
Answer: O.
Using chain rule,
 $(05x \cdot l_n x - \frac{sinx}{x})$

WXX

(e)
$$f(x) = \frac{e^x}{x}$$

 $\left(\frac{e^x}{x}\right)^{l} = \frac{x \cdot e^{x-l}}{x} = e^{x-l}$

Using the quotient rule,

$$\begin{pmatrix} e^{x} \\ \overline{x} \end{pmatrix}^{\prime} = e^{x} \cdot \begin{pmatrix} 1 \\ \overline{x} \end{pmatrix}^{\prime} + \begin{pmatrix} e^{x} \end{pmatrix}^{\prime} \cdot \frac{1}{x}$$

$$= e^{x} \left(-\frac{1}{x^{2}} + \frac{1}{x} \right) = \frac{e^{x} \left(x - 1 \right)}{x^{2}}$$

 Let f(x) be a function, a some real number, and h a variable. Decide what best represents the following expressions (delete as appropriate), and use a few of your own words to describe the expression given. (2pts each)

		0
f(x)	Function/Number	function
f(a)	Function/Number	mumbes
The slope of $f(x)$ at a	Function/Mumber	slope?
The tangent line to $f(x)$ at a	Function/Mumber	line At a point f(x)
f'(x)	Function/Number	derivative
f'(a)	Function/Number	derivative ?
$\frac{f(x+h)-f(x)}{h}$	Function/Number	derivative ?

4. True or false:
$$\frac{d}{dx}(\ln(\pi)) = \frac{1}{\pi}$$
. (2pts)
Since $(\ln x)' = \frac{1}{x}$, get
 $l_{\mu}(\pi)' = \frac{1}{\pi}$. True
 $l_{\mu}(\pi)' = \frac{1}{\pi} \cdot \pi' = 0$
Answer : 0

5. Using the chain rule, show that the derivative of ln(x) is 1/x. That is, start with the composition

 $e^{\ln(x)=x}$

and differentiate it using the chain rule. Do not use implicit differentiation, and do not use the formula for the derivative of the inverse function. (6pts)

$$e^{l_{mx}} = x \quad \text{Derivative:}$$

$$(e^{l_{nx}})' = x' = 1 .$$

$$(e^{l_{nx}})' = l_{nx} . e^{l_{nx-1}} . (l_{nx})' =$$

$$= l_{nx} . \frac{e^{l_{nx}}}{l_{nx}} . (l_{nx})'$$

$$= e^{l_{nx}} . (l_{nx})'$$

$$= x . (l_{nx})' = 1$$

$$\text{So} \left[(l_{nx})' = \frac{1}{x} \right]$$

$$e^{\ln x} = x$$

$$e^{\ln x} = \frac{1}{x}$$

$$e^{\ln x} = \frac{1}{x}$$

$$e^{\ln x} = e^{\ln x} \cdot (e^{\ln x})^{1} = e^{\ln x}$$

$$e^{\ln x} = e^{\ln x} \cdot (e^{\ln x})^{1} = e^{\ln x}$$

$$e^{\ln x} = e^{\ln x} \cdot (e^{\ln x})^{1} = e^{\ln x}$$

$$e^{\ln x} = e^{\ln x} = e^{\ln x}$$